BOD Analysis

19.4 Biochemical Oxygen Demand (BOD)

- It was impractical to rigorously quantify how each compound in sewage decomposes.
- Empirical approach is used merely measured how much oxygen was consumed, this resulting quantity is BOD.
- BOD(t) oxygen consumed changes with time, e.g., BOD₅ as 5-day BOD, and BOD_u as ultimate BOD or ultimate oxygen that can be consumed during decomposition.
- Introduce (L) as oxidizable organic matter remaining in the bottle expressed as oxygen equivalents

Change of L, y, and o with time

$$V\frac{dL}{dt} = -k_1 VL$$

$$L = L_o e^{-m_p}$$

 $y = L_o - L$

$$y = L_o(1 - e^{-k_1 t})$$

$$V\frac{do}{dt} = -k_1 V L_o e^{-k_1 t}$$

$$o = o_o - L_o (1 - e^{-k_1 t})$$

- y is the (cumulative) oxygen consumed during the decomposition process
- y = BOD
- o is oxygen concentration in the environment (containing sewage)

L_o and BOD_u

- Form 19.4, we have L_o = BOD_u, i.e., initial oxidizable organic matter = ultimate BOD
- We can use BOD_u or BOD to quantify how much organic matter in the sewage as oxygen consumption equivalent
- L(t) as oxidizable organic matter remaining in the sewage (expressed by oxygen equivalents) at any time is presented as BOD(t) or y(t)
- $L_o = BOD_u = BOD$
- CBOD carbonaceous BOD due to decomposition of carbonaceous matter
- NBOD nitrogenous BOD- oxidation of ammonia to nitrite then to nitrate (nitrification)

19.5 BOD model for a stream

$$\frac{\partial L}{\partial t} = -U \frac{\partial L}{\partial x} - k_r L$$

$$k_r = k_d + k_s$$

$$k_s = \frac{v_s}{H}$$

$$0 = -U \frac{\partial L}{\partial x} - k_r L$$
$$L_o = \frac{Q_w L_w + Q_r L_r}{Q_w + Q_r}$$

 $L = L_o e^{-\frac{k_r}{U}x}$

 K_r is total removal rate as sum of decomposition (first order k_d) and settling (k_s) with settling velocity of v_s.

19.6 BOD loading, concentration and rates

TABLE 19.1

Typical values of the BOD bottle decomposition rate for various levels of treatment. BOD_u is the ultimate BOD. Values here are for CBOD

Treatment	$k_1(20^\circ \mathrm{C})$	BOD ₅ /BOD _u	
Untreated	0.35 (0.20-0.50)	0.83	
Primary	0.20 (0.10-0.30)	0.63	
Activated sludge	0.075 (0.05-0.10)	0.31	

•BOD₅ (5-Day BOD)

•
$$L_o = BOD_u$$

= $BOD_5/[1-exp(-k_15)]$
= $v_s/[1-exp(-k_15)]$

(see equation 19.26 on page 357)

TABLE 19.2Typical loading rates for untreated domestic sewage

	Per-capita flow rate (m ³ capita ⁻¹ d ⁻¹)	Per-capita CBOD (m ³ capita ⁻¹ d ⁻¹)	CBOD concentration $(mg L^{-1})$
United States	0.57 (150) [†]	125 (0.275) [‡]	220

[†]Gallons capita⁻¹ day⁻¹; [‡]pounds capita⁻¹ day⁻¹.

19.6.3 BOD removal rate

Total BOD removal rate

Settling effects

$$k_r = k_d + \frac{v_s}{H}$$

• Bed effects

$$k_d = 0.3 \left(\frac{H}{8}\right)^{-0.434}$$

$$0 \le H \le 8ft$$

 k_d Attoched Macte Safin shallow water have higher removal rate (more effective in decomposition.

FIGURE 19.6

Plot of total removal rate versus stream depth for BOD that is 50% in settleable form. A range of settling velocities is depicted. Note that a decomposition rate of $0.35 d^{-1}$ is used.

