Dissolved Oxygen and Biochemical Oxygen Demand Analyses

Prepared By
Michigan Department of Environmental Quality
Operator Training and Certification Unit

Note: These Procedures are available in the OTCU Laboratory manual which is available on the OTCU website.

Dissolved Oxygen

D.O.

Amount of "FREE" Oxygen

O₂

In the Water

Required By:

FISH

MICROORGANISMS

(Bacteria)

RESPIRATION

Organic Matter Converted to:

Carbon Dioxide and

Water

$$CH_2O + O_2 \longrightarrow CO_2 + H_2O$$

RESPIRATION

 $CH_2O + O_2 \longrightarrow CO_2 + H_2O$ Reason for Treatment **Basis of Secondary Treatment Basis of BOD Analysis**

Nitrification

BIOLOGICAL Oxidation of Nitrogen

From
AMMONIA
(NH₃)

to
NITRITE
(NO₂)

to
NITRATE
(NO₃)

 $NH_3 + O_2 \longrightarrow NO_2 + O_2 \longrightarrow NO_3$

NITRIFICATION

$$NH_3 + O_2 \longrightarrow NO_2 + O_2 \longrightarrow NO_3$$

May be Required:

Oxygen Demand Reduction

Ammonia Removal (toxic)

Reason for D.O. Analysis

Used in BOD Analysis
Treatment Processes
Treatment Plant Effluents
Receiving Stream

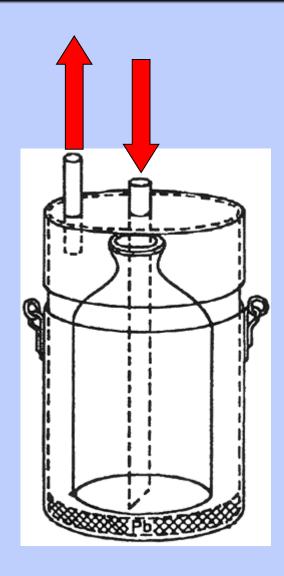
Maximum D.O. Concentrations in Water (Saturation)

Temperature	Max. Concentration
<u>о</u> С	mg/L
0	14.6
4	13.1
8	11.9
12	10.8
16	10.0
20	9.2
24	8.5
28	7.9
30	7.6

SAMPLE COLLECTION

Sample

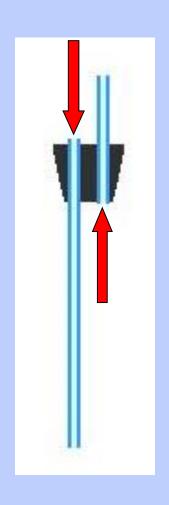
0 to 10 mg/L

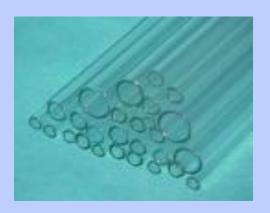

Atmosphere

21 %

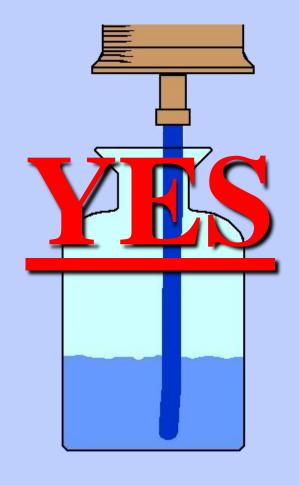
210,000 mg/L

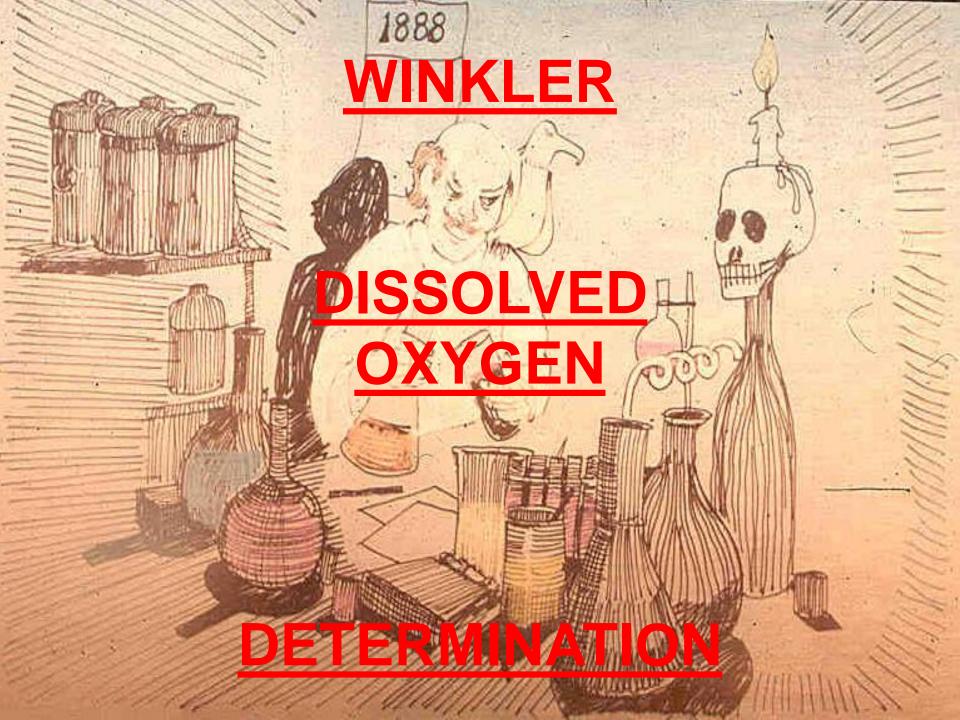
SAMPLE COLLECTION

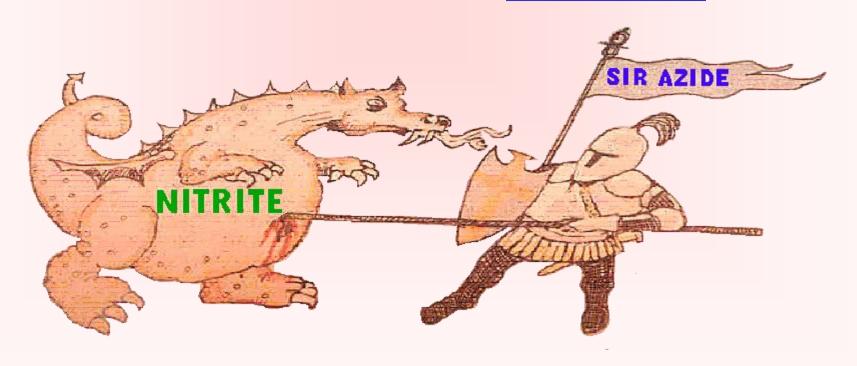


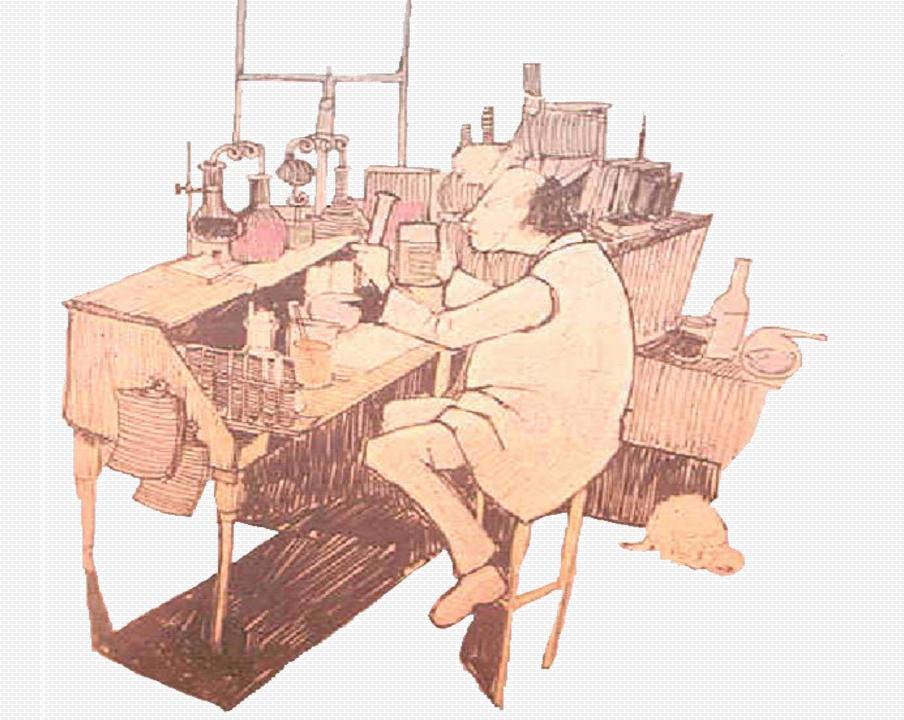


SAMPLE COLLECTION




Do Not <u>AERATE</u> Sample

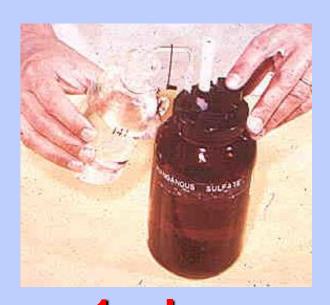

Do Not Splash Sample in Air or Let Air Circulate in Sample


D.O. Procedure

WINKLER Dissolved Oxygen PROCEDURE with the ALSTERBERG AZIDE MODIFICATION

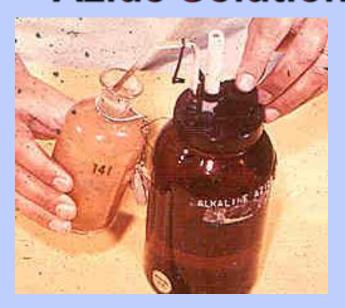
AZIDE Destroys NITRITE

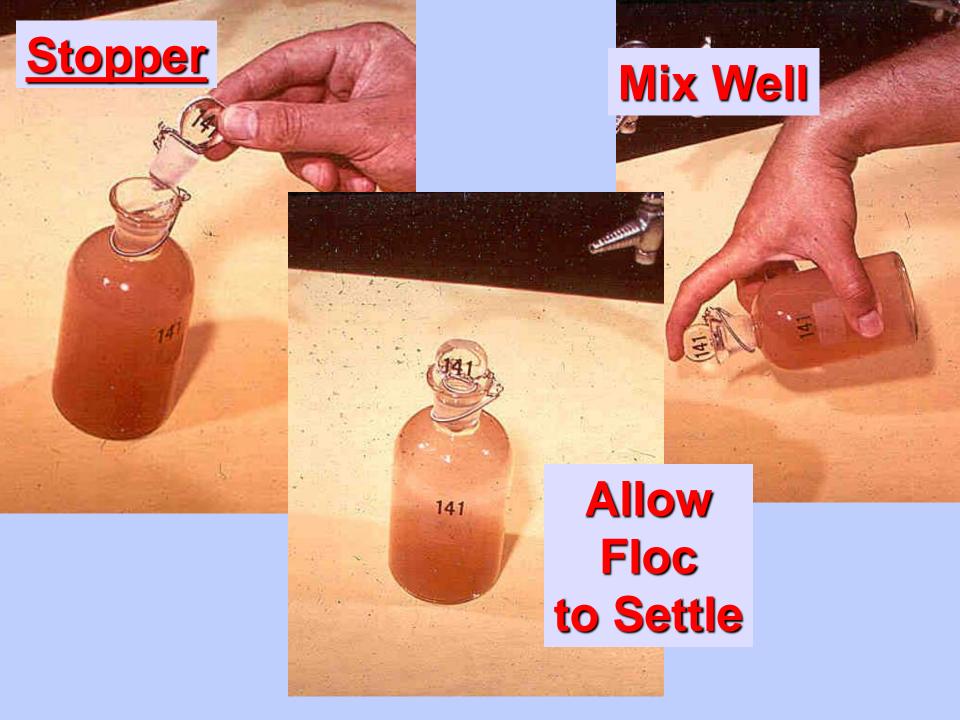
Winkler Method Iodometric Method


1. Takes Mixing

2. Takes Time

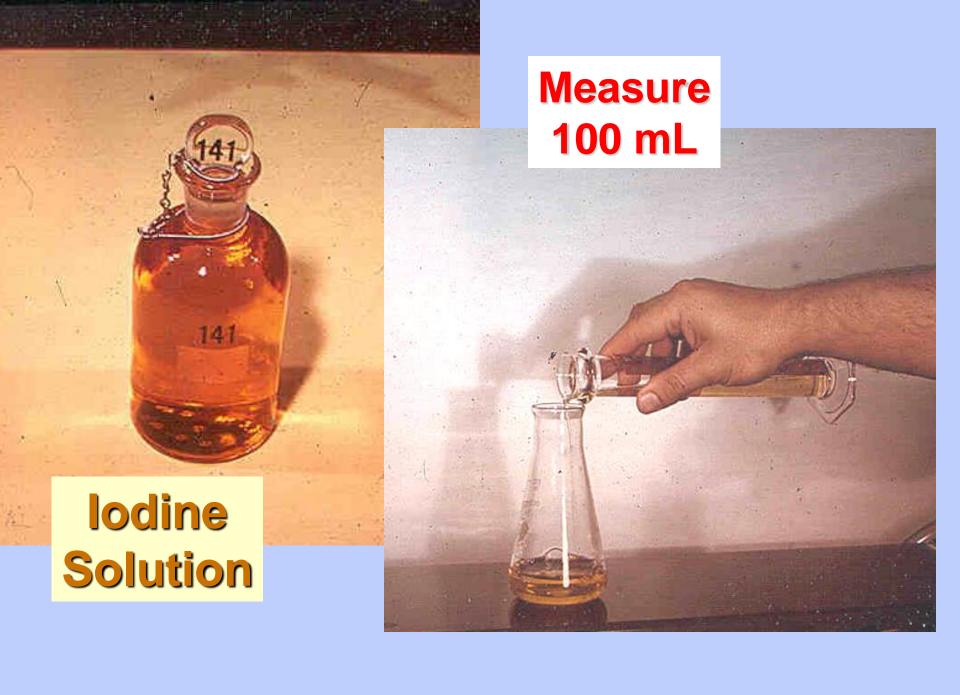
3. Free **IODINE** released in relation to D.O. in Sample

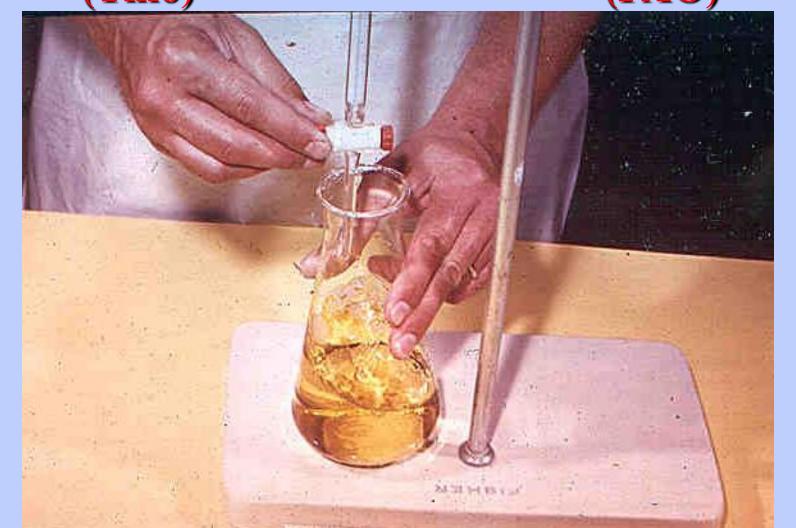

Winkler Procedure

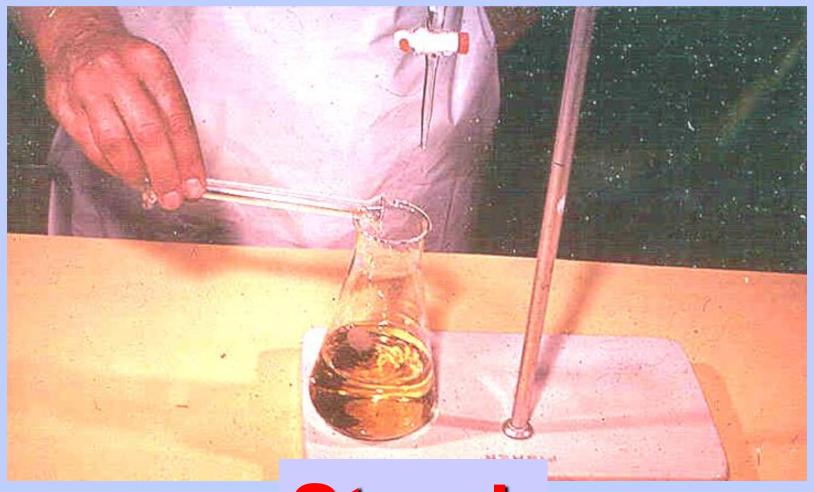


1 mL Manganous Sulfate

1 mL Alkaline Azide Solution






Titration

Sodium Thiosulfate OR (Thio)

Phenylarsene Oxide (PAO)



End Point Indicator

Starch

Mg/L D.O. =X Normality of Titrant X 8 X 1000 **mL** of Titrant mL of Sample 0.0125 N X 8 X 1000 ___ 1

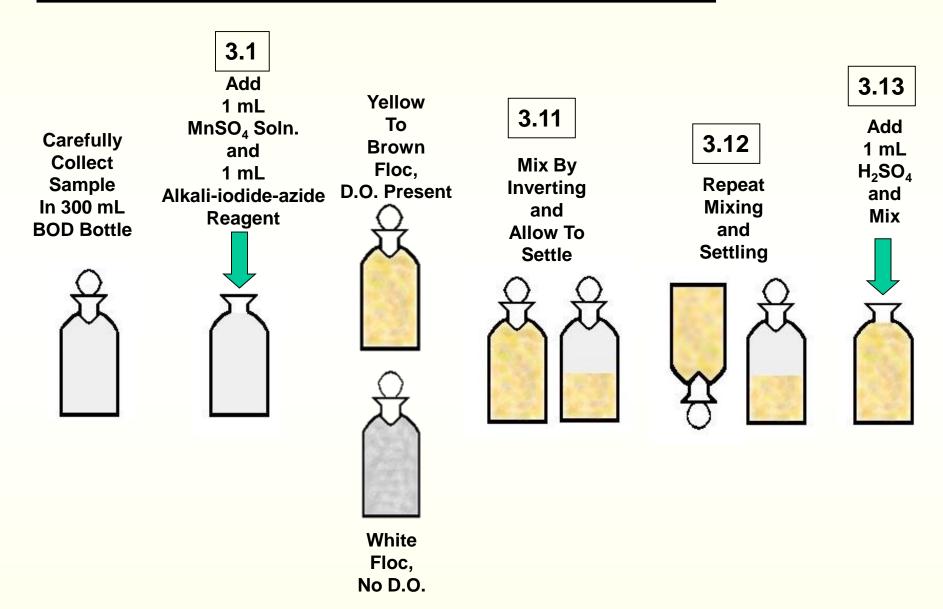
100

Mg/L D.O. =

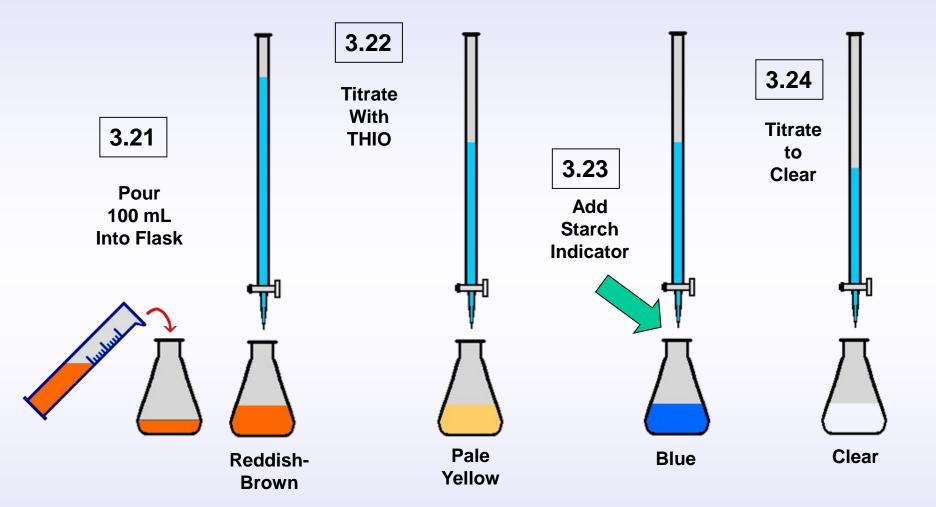
mL of Titrant X 1

When 100 ml of Sample is Titrated with 0.0125 Normal Titrant

Each mL used Equals 1 mg/L of D.O.


If
4.6 mL
is Used
Then the D.O. in the Sample is
4.6 mg/L

1 mL of Titrant = 1 mg/L D.O.


With Any of the Following Combinations of Sample Volumes and Normalities

Sample Volume	Normality
100 mL	0.0125 N
200 mL	0.0250 N
300 mL	0.0375 N

Outline Of Winkler Dissolved Oxygen Procedure

Titration of Iodine Solution

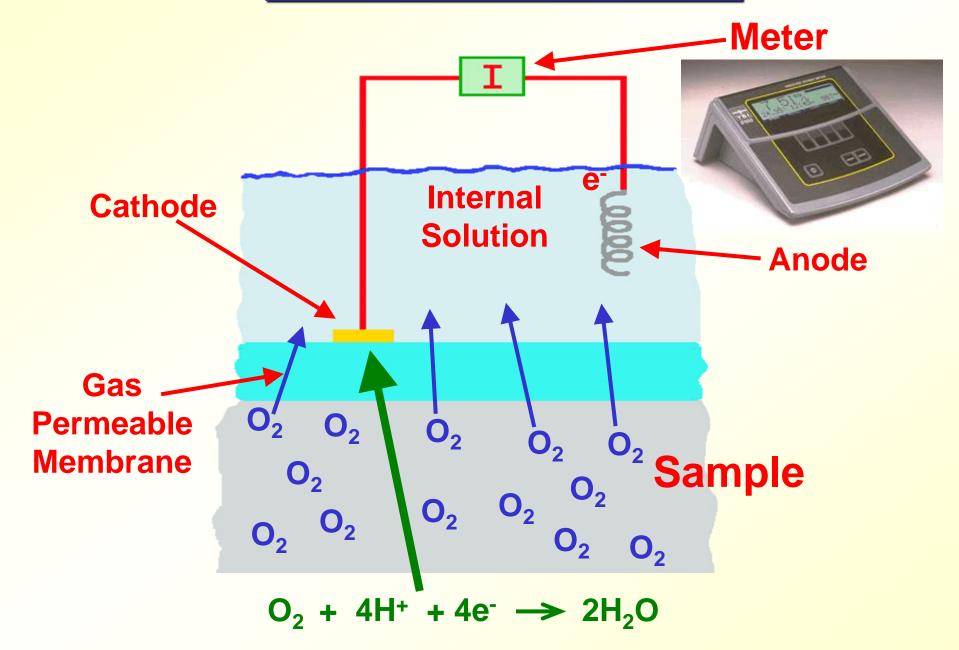
Winkler Method Iodometric Method

1. Takes Mixing

2. Takes Time

3. Free **IODINE** released in relation to D.O. in Sample

D.O. Procedure


Electrode Methods

MEMBRANE ELECTRODE METHOD

The membrane electrode is composed of two solid metal electrodes in contact with supporting electrolyte separated from the test solution by a gas permeable membrane. Oxygen dissolved in the sample diffuses through the membrane on the DO probe and is chemically reduced (accepts electrons), producing an electrical current between the anode and cathode in the probe. The amount of current is proportional to the concentration of DO. Following proper calibration, the meter relates this current to the concentration of DO.

CLARK ELECTRODE

<u>MEMBRANE ELECTRODE METHOD</u>

Calibration

Comparison with Winkler Titration

- 1. Fill two BOD bottles completely full of BOD dilution water, being very careful not to introduce air into either bottle.
- 2. Analyze one bottle for D.O. using the Winkler titration.
- 3. Insert the electrode into the second bottle, turn on the stirring mechanism, and wait for the reading to stabilize.
- 4. Calibrate the meter to the D.O. value obtained in the titration.
- 5. The meter is now ready for sample analysis

MEMBRANE ELECTRODE METHOD

"AIR" Calibration

This procedure varies considerably among the various instrument models available. Therefore, the procedure must be obtained from the instrument manual, but the following points should be noted.

- 1. Where possible with the specific equipment being used, compensation should be made during calibration for <u>both</u> ambient temperature and local atmospheric pressure. This pressure should be determined using a reliable onsite barometer. The oxygen solubility table following this procedure may be used.
- 2. Carefully blot any water droplets from the membrane using a soft tissue.
- 3. During calibration, be sure the membrane is exposed to fresh air. Laying the electrode on the bench for calibration is usually adequate.
- 4. Complete the calibration as soon as possible before the electrode membrane begins to dry.
- 5. The temperature registered on the meter should be checked against a trusted thermometer often.
- 6. Daily calibration of the D.O. meter is required. Calibration should also be verified after every five or six sample measurements.
- 7. Assure sufficient sample flow across membrane surface during analysis to overcome erratic response.

		Onsite Barometric Pressure													
	Atm:	0.970	0.975	0.980	0.985	0.990	0.995	1.000	1.005	1.010	1.015	1.020	1.030	1.040	1.050
	mm Hg:	737	741	745	749	752	756	760	764	768	771	775	783	790	798
	Inch Hg:	29.02	29.17	29.32	29.47	29.62	29.77	29.92	30.07	30.22	30.37	30.52	30.82	31.12	31.42
Temperature [®] Celsius	15.00	9.78	9.83	9.88	9.93	9.98	10.03	10.08	10.13	10.19	10.24	10.29	10.39	10.49	10.60
	15.50	9.67	9.72	9.77	9.82	9.88	9.93	9.98	10.03	10.08	10.13	10.18	10.28	10.38	10.48
	16.00	9.57	9.62	9.67	9.72	9.77	9.82	9.87	9.92	9.97	10.02	10.07	10.17	10.27	10.37
	16.50	9.47	9.52	9.57	9.62	9.67	9.72	9.77	9.82	9.87	9.92	9.97	10.07	10.16	10.26
	17.00	9.37	9.42	9.47	9.52	9.57	9.62	9.66	9.71	9.76	9.81	9.86	9.96	10.06	10.16
	17.50	9.27	9.32	9.37	9.42	9.47	9.52	9.57	9.61	9.66	9.71	9.76	9.86	9.96	10.05
	18.00	9.18	9.23	9.27	9.32	9.37	9.42	9.47	9.51	9.56	9.61	9.66	9.76	9.85	9.95
	18.50	9.08	9.13	9.18	9.23	9.28	9.32	9.37	9.42	9.47	9.51	9.56	9.66	9.75	9.85
	19.00	8.99	9.04	9.09	9.13	9.18	9.23	9.28	9.32	9.37	9.42	9.47	9.56	9.65	9.75
	19.50	8.90	8.95	9.00	9.04	9.09	9.14	9.18	9.23	9.28	9.32	9.37	9.47	9.56	9.65
	20.00	8.81	8.86	8.91	8.95	9.00	9.05	9.09	9.14	9.18	9.23	9.28	9.37	9.45	9.56
	20.50	8.72	8.77	8.82	8.86	8.91	8.96	9.00	9.05	9.10	9.14	9.19	9.28	9.37	9.46
	21.00	8.64	8.68	8.73	8.78	8.82	8.87	8.91	8.96	9.01	9.05	9.10	9.19	9.28	9.37
	21.50	8.56	8.60	8.65	8.69	8.74	8.78	8.83	8.87	8.92	8.96	9.01	9.10	9.19	9.28
	22.00	8.47	8.52	8.56	8.61	8.65	8.70	8.74	8.79	8.83	8.88	8.92	9.01	9.10	9.19
	22.50	8.39	8.44	8.48	8.53	8.57	8.62	8.66	8.70	8.75	8.79	8.84	8.93	9.02	9.10
	23.00	8.31	8.36	8.40	8.44	8.49	8.53	8.58	8.62	8.67	8.71	8.75	8.84	8.93	9.02
	23.50	8.23	8.28	8.32	8.37	8.41	8.45	8.50	8.54	8.58	8.63	8.67	8.76	8.85	8.93
	24.00	8.16	8.20	8.24	8.29	8.33	8.37	8.42	8.46	8.50	8.55	8.59	8.68	8.76	8.85
	24.50	8.08	8.12	8.17	8.21	8.25	8.30	8.34	8.38	8.43	8.47	8.51	8.60	8.68	8.77
	25.00	8.01	8.05	8.09	8.13	8.18	8.22	8.26	8.31	8.35	8.39	8.43	8.52	8.60	8.69
	25.50	7.93	7.97	8.02	8.06	8.10	8.15	8.19	8.23	8.27	8.31	8.36	8.44	8.53	8.61
	26.00	7.86	7.90	7.94	7.99	8.03	8.07	8.11	8.15	8.20	8.24	8.28	8.36	8.45	8.53
	26.50	7.79	7.83	7.87	7.91	7.96	8.00	8.04	8.08	8.12	8.16	8.21	8.29	8.37	8.46
	27.00	7.72	7.76	7.80	7.84	7.88	7.93	7.97	8.01	8.05	8.09	8.13	8.22	8.30	8.38
	27.50	7.65	7.69	7.73	7.77	7.81	7.86	7.90	7.94	7.98	8.02	8.06	8.14	8.22	8.31
	28.00	7.58	7.62	7.66	7.70	7.75	7.79	7.83	7.87	7.91	7.95	7.99	8.07	8.15	8.23
	28.50	7.52	7.56	7.60	7.64	7.68	7.72	7.76	7.80	7.84	7.88	7.92	8.00	8.08	8.16
	29.00	7.45	7.49	7.53	7.57	7.61	7.65	7.69	7.73	7.77	7.81	7.85	7.93	8.01	8.09
	29.50	7.38	7.42	7.46	7.50	7.54	7.58	7.62	7.66	7.70	7.74	7.78	7.86	7.94	8.02
-	30.00	7.32	7.36	7.40	7.44	7.48	7.52	7.56	7.60	7.64	7.68	7.72	7.79	7.87	7.95

NOTE: The first three lines are different units for the same pressure measurement.

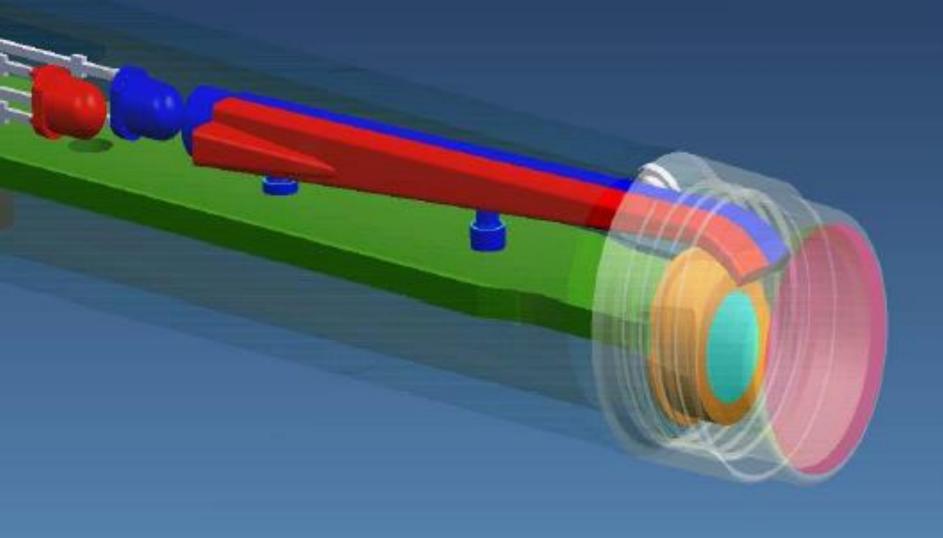
CLARK ELECTRODE

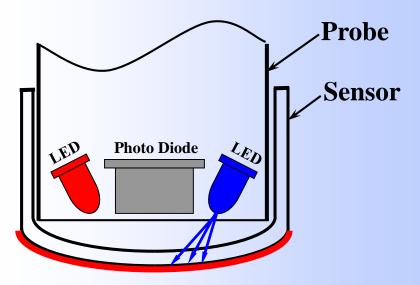
Calibration

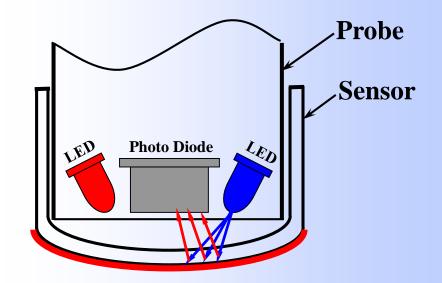
NOT REQUIRED

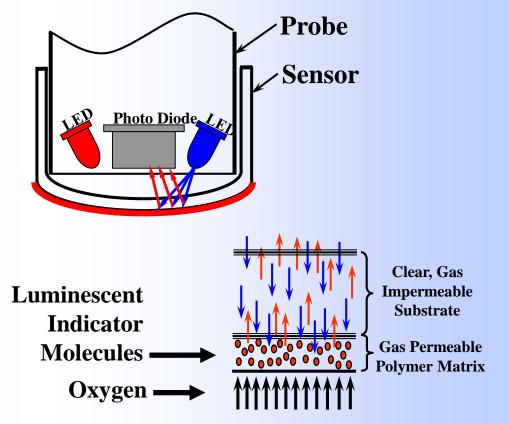
NO

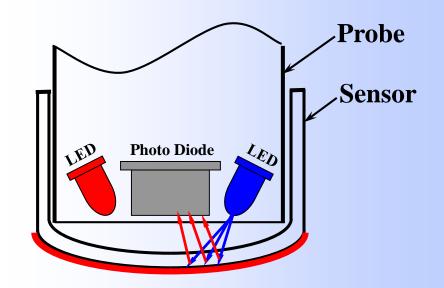
(Use a Reliable Barometer)

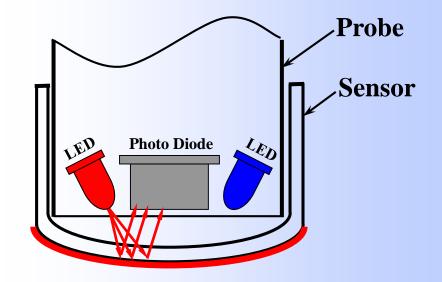



Luminescence D.O. Probe


Luminescence D.O. Probe


- A sensor is coated with a luminescent material.
- Blue light from an LED strikes the luminescent chemical on the sensor.
- The luminescent chemical instantly becomes excited.


- As the excited chemical relaxes, it releases red light.
- The red light is detected by a photo diode.
- The time it takes for the chemical to return to a relaxed state is measured


- When oxygen contacts the luminescent chemical, the intensity of the red light decreases
- The amount of time it takes for the material to relax is reduced

- The intensity of the red light is <u>not</u> what's being measured.
- What's being measured is the time it takes after excitation for red light to be given off.
 - Lifetime of luminescence

- A red LED is also present in the probe.
- Between flashes of the blue LED, a red LED of known intensity, is flashed on the sensor.
 - The red LED acts as an internal standard (or reference) for a comparison to the red light given off by the luminescent chemical.

Reduced Maintenance

No membrane to replace

No more stretching of Teflon and worrying about air bubbles
No more punctured membranes

No H₂S poisoning of the electrolyte

No cleaning of anodes

No more coating of electrodes

Reduced Maintenance

No membrane to replace

No more stretching of Teflon and worrying about air bubbles
No more punctured membranes

No electrolyte to foul or poison

No H₂S poisoning of the electrolyte

No anode or cathode

No cleaning of anodes

No more coating of electrodes

Reduced Maintenance

No membrane to replace

No more stretching of Teflon and worrying about air bubbles
No more punctured membranes

No electrolyte to foul or poison

No H₂S poisoning of the electrolyte

No anode or cathode

No cleaning of anodes

No more coating of electrodes

- Frequent Calibration Not Required
 - No anode to consume and no electrolyte to deplete means extremely stable measurements
 - Internal standard with Red LED
 - No interference from pH swings, wastewater chemicals, H₂S, or heavy metals

- Accurate and Stable Readings
 - With nothing to interfere with the readings, LDO produces more stable measurements for a longer time
- Speed!
 - Turn it on and it's running!
 - Response time of less than 30 seconds to 90%!

- Simple Operation and Maintenance
 - Only one replacement part
 - Inexpensive sensor cap is simple to replace quickly

NOW EPA APPROVED

Listed In Federal Register Vol. 77,No. 97 Friday, May 18, 2012

Listed as ASTM Method D888-09 (C)

Footnote 63 – Hach Method 10360
(BOD and cBOD)
Footnote 64 In-Situ Method 1002-8-2009
(Dissolved Oxygen Measurement by Optical Probe)

D.O. METER

<u>Advantages</u>

Saves Time
Continuous Monitoring
Less Chemical Interference
Portable

D.O. METER

Limitations

(Membrane Electrode)

Daily Calibration
Flow Past Membrane
Membrane May Foul
Requires Training

B () 5

Biochemical Oxygen Demand

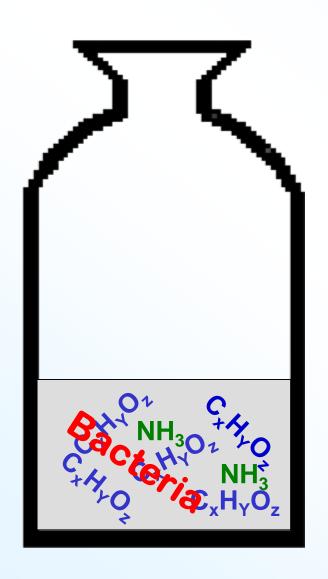
The Quantity of Oxygen Used in the Biochemical Oxidation of Organic Material.

Under:

Specified Time

Specified Temperature

Specified Conditions

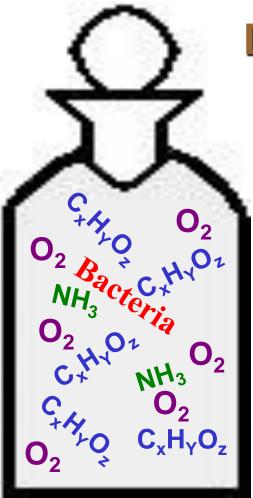

5 Days

 $20^{0} C$

In the Dark In the Presence

of Bacteria

Measured Volume of Wastewater is Added to BOD Bottle.

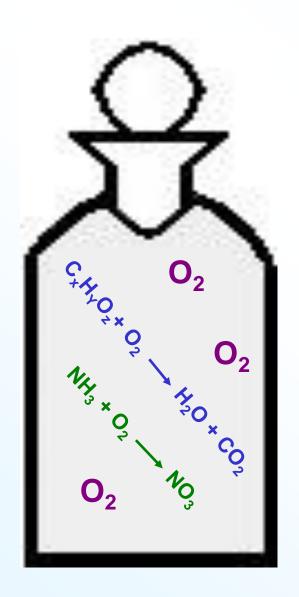

Contains:

Organics

Ammonia

Bacteria

Dilution Water Added

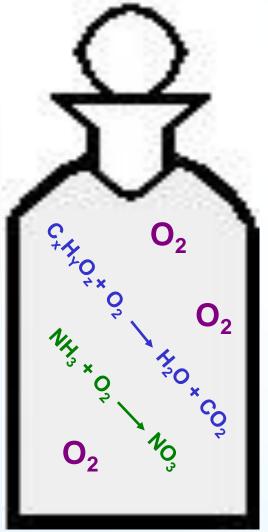

Dilution Water Contains:

Nutrients

Oxygen

Measure D.O. Concentration

Incubate 5 Days


Some Oxygen Used:

Respiration

Nitrification

Measure D.O. Concentration

Measure Oxygen Loss (Demand)

D.O. Day 1 - D.O. Day 5

= Oxygen Demand

(Of What Is In The Bottle)

Distilled Water

High Quality

Free of Toxic Material

Free of Oxygen Demanding Substances

REAGENTS

Distilled Water

Phosphate Buffer
Magnesium Sulfate
Calcium Chloride
Ferric Chloride

Provide Essential Nutrients Buffer pH

OTHER REAGENTS

DECHLORINATING AGENT Sodium Sulfite - Na₂SO₃

NITRIFICATION INHIBITOR CBOD

QUALITY CONTROL CHECK
Accuracy
Glucose - Glutamic Acid Solution

SAMPLE PRETREATMENT

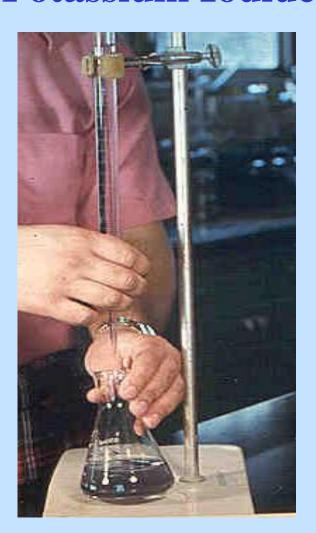
Temperature

Near 20°C

pH

Between 6.5 and 7.5

(Adjust if > 8.5 or < 6.0 and seed)


Supersaturated D.O. Agitate

Dechlorinate

Proper Amount of Sodium Sulfite

DECHLORINATION

100 mL of Sample + Potassium Iodide + Sulfuric Acid + Starch

Titrate with Sodium Sulfite

to Starch
Iodide
Endpoint

DILUTION WATER

Distilled Water

plus

BUFFER

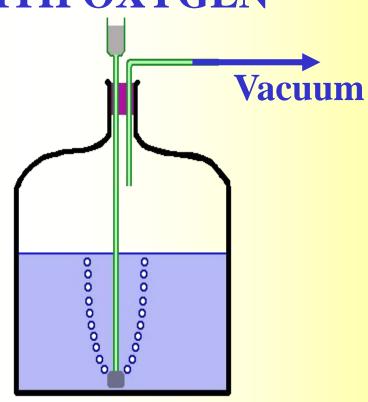
plus

NUTRIENTS

High Quality
No Toxics
No Organics

pH 7.2

(Phosphorus and Ammonia)
Magnesium


Calcium

Iron

DILUTION WATER PREPARATION

NEEDED VOLUME for Each Day's Use ADD NUTRIENTS (1 mL per Liter) SATURATE WITH OXYGEN

Shake (small volume) or Draw Vacuum

DILUTION WATER PREPARATION

NEEDED VOLUME
ADD NUTRIENTS
SATURATE WITH OXYGEN

STORE In Incubator

ADD BUFFER
Day of Use

BOD PROCEDURE

DILUTE SAMPLE

Minimum Residual, 1.0 mg/L Minimum Depletion, 2.0 mg/L At Least Two Dilutions Thoroughly Mix Sample

ADD NITRIFICATION INHIBITOR

TCMP
0.10 gram/bottle
Two "shots"

BOD PROCEDURE

DILUTE SAMPLE

Minimum Residual, 1.0 mg/L Minimum Depletion, 2.0 mg/L At Least Two Dilutions Thoroughly Mix Sample

ADD NITRIFICATION INHIBITOR

If Required for CBOD

Add SEED (Bacteria)

If Required

Disinfected Samples Industrial Samples Reference Samples

BOD PROCEDURE

Source of Seed (bacteria) Settled Sewage Primary Effluent

Commercially Available

Adapted Seed

BOD PROCEDURE, (cont.)

FILL BOTTLE (with dilution water)

MEASURE INITIAL D.O.

STOPPER

(No Air Bubbles)

SEAL

(Water and Cover)

BOD PROCEDURE, (cont.)

INCUBATE

20 ± 1°C 5 Days ± 6 hour

MEASURE FINAL D.O.

(wash bottles)

DILUTION WATER BLANK

CHECK ON QUALITY

MAXIMUM DEPLETION 0.2 mg/L

NOT USED IN CALCULATIONS

B.O.D. Calculation

D.O. In - D.O. Out = DEPLETION

= Oxygen Demand of Diluted Sample

$$\mathbf{C_1} \ \mathbf{X} \ \mathbf{V_1} = \mathbf{C_2} \ \mathbf{X} \ \mathbf{V_2}$$

$$BOD Sample = \frac{Depletion}{Sample Volume} X 300 mL$$

B.O.D. mg/L = D.O. DEPLETION (mg/L) SAMPLE VOLUME (mL) X 300 mL

D.O. DEPLETION = D.O. Initial - D.O. 5-Day

Minimum Depletion - 2.0 mg/L Minimum Residual - 1.0 mg/L

B.O.D. Example Problem

Calculate the B.O.D.:

```
Initial Sample D.O. = 8.1 mg/L
5-Day Sample D.O. = 2.1 mg/L
Vol. Of Sample in 300 mL Bottle = 60 mL
```

B.O.D., mg/L =
$$\frac{D.O. Depletion, mg/L}{Volume Sample, mL} \times 300 mL$$

$$= \frac{6.0 \text{ mg/L}}{60 \text{ mL}} \times 300 \text{ mL}$$

B.O.D. PRACTICE PROBLEM

Calculate the B.O.D. value to be reported for each of the samples below. Be sure to consider the minimum depletion and residual requirements.

Sample 1	Dilution A	Dilution B	3
mL Sample	15	30	
Initial D.O., m	g/L \%. 1	8.2	
5-Day D.O., m	g/L 6/6	4.2	
Depletion	4.5	4.0	

B.O.D., mg/L =
$$\frac{D.O. Depletion, mg/L}{Volume Sample, mL} \times 300 mL$$

= $\frac{4.0 mg/L}{30 mL} \times 300 mL$
= $40 mg/L$

B.O.D. PRACTICE PROBLEM

Calculate the B.O.D. value to be reported for each of the samples below. Be sure to consider the minimum depletion and residual requirements.

Sample 2	ample 2 <u>Dilution A</u>	
mL Sample	15	30
Initial D.O., mg	/L 8.0	8.2
5-Day D.O., mg	/L <u>4.3</u>	0.7
Depletion	3.7	

B.O.D., mg/L =
$$\frac{D.O. Depletion, mg/L}{Volume Sample, mL} \times 300 mL$$

= $\frac{3.7 mg/L}{15 mL} \times 300 mL$
= $74 mg/L$

B.O.D. PRACTICE PROBLEM

Sample 3	Dilution A	Dilution B		
mL Sample	15	30		
Initial D.O., mg	/L 8.1	8.1		
5-Day D.O., mg	/L <u>5.6</u> 2.5	3.3 4.8		
Depletion	2.5	4.8		
$BOD_A = \frac{2.5 \text{ mg/L}}{15 \text{ mL}} \times 300 \text{ mL} = 50 \text{ mg/L}$				
$BOD_B = \frac{4.8 \text{ m}}{30 \text{ r}}$	<u>ng/L</u> X 300 n nL	nL = 48 mg/L		
<u>50</u>	+ 48 = 49 r	ng/L		

BOD PROCEDURE

DILUTE SAMPLE

Minimum Residual, 1.0 mg/L

Minimum Depletion, 2.0 mg/L

At Least Two Dilutions

Thoroughly Mix Sample

ADD NITRIFICATION INHIBITOR

If Required for CBOD

Add SEED (Bacteria)

If Required

De-chlorinated Samples Industrial Samples Reference Samples

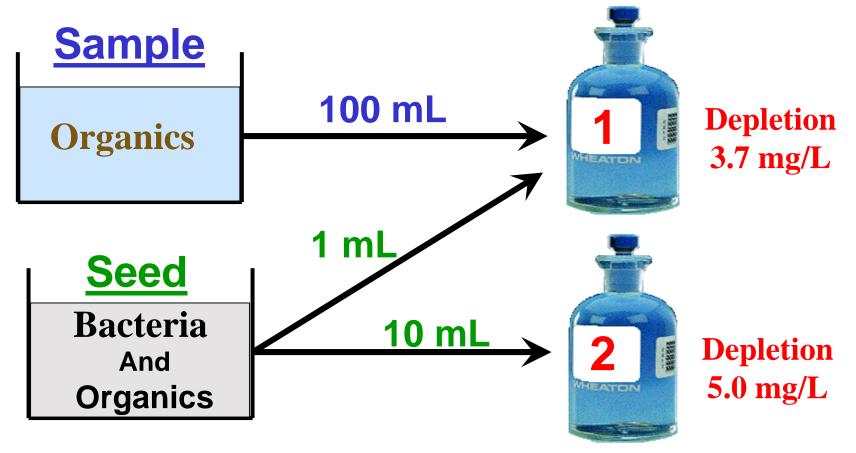
BOD PROCEDURE

Source of Seed (bacteria)

Settled Sewage Primary Effluent

Commercially Available

Adapted Seed


SEEDED BOD PROCEDURE

10 mL of seed caused 5.0 mg/L Depletion

1 mL would have caused $\frac{5.0 \text{ mg/L}}{10 \text{ mL}} = 0.5 \text{ mg/L}$

So: 0.5 mg/L would be used by 1 mL of seed in seeded sample

SEEDED BOD CALCULATION

BOD_(seeded) =
$$\frac{D_1 - D_2}{\text{Sample Volume}} \times 300 \text{ mL}$$

SEEDED BOD CALCULATION

BOD_(seeded) =
$$\frac{D_1 - D_2}{\text{Sample Volume}} \times 300 \text{ mL}$$

D₁ = Depletion Due To Sample and Seed (Total Depletion in Bottle with Seed and Sample)

D₂ = D.O. Depletion Due to Just Seed

(Seed Depletion in Bottle with Seed and Sample)

BOD_(seeded) =
$$\frac{D_1 - D_2}{\text{Sample Volume}} \times 300 \text{ mL}$$

D₂ = D.O. Depletion Due to Just Seed (Seed Depletion in Bottle with Seed and Sample)

D₂ Must Be Calculated Based on Bottle with Just Seed

In The Bottle with Just Seed

BOD_(seeded) =
$$\frac{D_1 - D_2}{\text{Sample Volume}} \times 300 \text{ mL}$$

D₂ = D.O. Depletion Due to Just Seed (Seed Depletion in Bottle with Seed and Sample)

In the Example

$$D_2 = \frac{5.0 \text{ mg/L}}{10\text{mL}} = 0.5 \text{ mg/L}$$

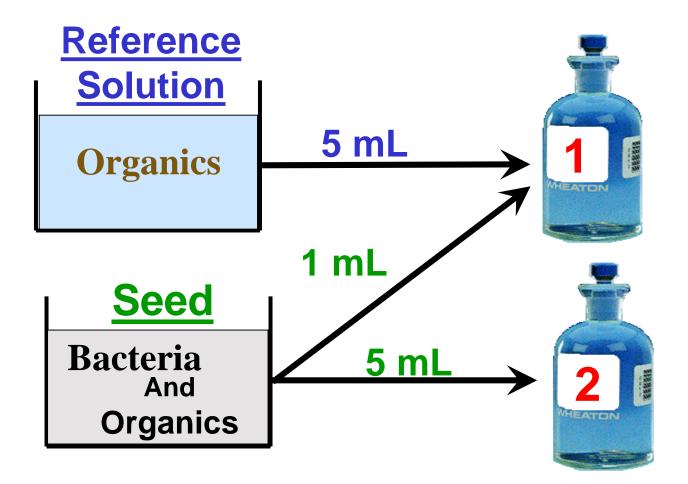
$$\frac{D_1 - D_2}{\text{Sample Volume}} \times 300 \text{ mL}$$

$$= \frac{3.2 \text{ mg/L}}{100 \text{ mL}} \times 300 \text{ mL}$$

$$= 9.6 \text{ mg/L}$$

D₂ = D.O. Depletion Due to Just Seed (Seed Depletion in Bottle with Seed and Sample)

What If More Than 1mL Was Used for Seeding?


$$D_2 = \frac{D.O. \text{ Depletion of a Sample of Seed}}{\text{Volume of Seed Used}}$$

$$D_2 = \frac{5.0 \text{ mg/L}}{10 \text{ mL}} = 0.5 \text{ mg/L/mL}$$

Multiply by mL Used for Seeding

Calculate the B.O.D. of a reference sample given that 1mL of seed material was used in the reference sample. (300 mL BOD bottles were used)

	Seed Material	Reference Sample
Volume Used	5 mL	5 mL
Initial D.O.	8.6 mg/L	8.7 mg/L
Final D.O.	5.8 mg/L	4.8 mg/L

Calculate the B.O.D. of a reference sample given that 1mL of seed material was used in the reference sample. (300 mL BOD bottles were used)

Volume Used
Initial D.O.
Seed Material
5 mL
5 mL
8.6 mg/L
5.8 mg/L
4.8 mg/L

$$\frac{D_1 - D_2}{\text{Sample Volume, mL}} \times 300 \text{ mL}$$

D₁ = Depletion of Sample & Seed

$$D_1 = 8.7 \text{ mg/L} - 4.8 \text{ mg/L}$$

$$D_1 = 3.9 \text{ mg/L}$$

Calculate the B.O.D. of a reference sample given that 1mL of seed material was used in the reference sample. (300 mL BOD bottles were used)

Volume Used

5 mL
Initial D.O.
8.6 mg/L
Final D.O.
Seed Material
5 mL
8.7 mg/L
4.8 mg/L

$$\frac{D_1 - D_2}{\text{Sample Volume, mL}} \times 300 \text{ mL}$$

D₂ = Depletion of Seed (In Seeded Sample)

$$D_2 = \frac{8.6 \text{ mg/L} - 5.8 \text{ mg/L}}{5 \text{ mL}}$$

$$D_2 = \frac{2.8 \text{ mg/L}}{5 \text{ mL}} = 0.56$$

Calculate the B.O.D. of a reference sample given that 1mL of seed material was used in the reference sample. (300 mL BOD bottles were used)

Volume Used Initial D.O. Final D.O.	Seed Material 5 mL 8.6 mg/L 5.8 mg/L	Reference San 5 mL 8.7 mg/L 4.8 mg/L	<u>nple</u>
BOD seeded	$= \frac{D_1}{\text{Sample }}$	- D ₂ Volume, mL	X 300 mL
BOD	= 3.9 mg/L 5	- 0.56 mg/L mL	X 300 mL
E	$\frac{3.34}{5}$	mg/L X 300 mL	0 mL

$$BOD = 200.4 \text{ mg/L}$$

Calculate the B.O.D. of an de-chlorinated effluent sample given that 1mL of seed material was used in the sample. (300 mL BOD bottles were used)

	<u>Seed Material</u>	<u>Sample</u>
Volume Used	10 mL	200 mL
Initial D.O.	8.3 mg/L	8.5 mg/L
Final D.O.	5.6 mg/L	3.7 mg/L

$$\frac{D_1 - D_2}{\text{Sample Volume, mL}} \times 300 \text{ mL}$$

$$D_1$$
 = Depletion of Sample & Seed

$$D_1 = 8.5 \text{ mg/L} - 3.7 \text{ mg/L}$$

$$D_1 = 4.8 \text{ mg/L}$$

Calculate the B.O.D. of an de-chlorinated effluent sample given that 1mL of seed material was used in the sample. (300 mL BOD bottles were used)

	Seed Material	<u>Sample</u>
Volume Used	10 mL	200 mL
Initial D.O.	8.3 mg/L	8.5 mg/L
Final D.O.	5.6 mg/L	3.7 mg/L

$$\frac{D_1 - D_2}{\text{Sample Volume, mL}} \times 300 \text{ mL}$$

$$D_2 = \frac{8.3 \text{ mg/L} - 5.6 \text{ mg/L}}{10 \text{ mL}}$$

$$D_2 = \frac{2.7 \text{ mg/L}}{10 \text{ mL}} = 0.27$$

Calculate the B.O.D. of an de-chlorinated effluent sample given that 1mL of seed material was used in the sample. (300 mL BOD bottles were used)

۱L
ıL

$$BOD = 6.8 \text{ mg/L}$$

BOD Practice Problems

1. Calculate the B.O.D. given:

```
D.O. IN = 7.0 \text{ mg/L}
D.O. OUT (5-day) = 3.5 \text{ mg/L}
Vol. Sample in B.O.D. bottle = 15 \text{ mL}
```

2. Calculate the B.O.D. of a reference sample given that 1mL of seed material was used in the reference sample.

(300 mL BOD bottles were used)

	Seed Material	Reference Sample
Volume Used	9 mL	5 mL
Initial D.O.	8.7 mg/L	8.6 mg/L
Final D.O.	5.1 mg/L	5.0 mg/L

Work Calculations on Separate Paper Answers Given on Next Slides

1. Calculate the B.O.D. given:

D.O. IN
$$= 7.0 \text{ mg/L}$$

D.O. OUT (5-day) $= 3.5 \text{ mg/L}$
Vol. Sample in B.O.D. bottle $= 15 \text{ mL}$

$$BOD = \frac{7.0 \text{ mg/L} - 3.5 \text{ mg/L}}{15 \text{ mL}} \times 300 \text{ mL}$$

$$BOD = \frac{3.5 \text{ mg/L}}{15\text{mL}} \times 300 \text{ mL}$$

$$BOD = 70 \text{ mg/L}$$

2. Calculate the B.O.D. of a reference sample given that 1mL of seed material was used in the reference sample.

(300 mL BOD bottles were used)

2. Calculate the B.O.D. of a reference sample given that 1mL of seed material was used in the reference sample.

(300 mL BOD bottles were used)

	Seed Material	Reference Sample	
Volume Used	9 mL	5 mL	
Initial D.O.	8.7 mg/L	8.6 mg/L	
Final D.O.	5.1 mg/L	5.0 mg/L	
BOD seeded =	D_1 -	- D ₂	
Sample Volume, mL X 300 mL			-

$$D_1$$
 = Depletion of Sample & Seed D_2 = Depletion of Seed

$$BOD = \frac{3.6 \text{ mg/L} - 0.40 \text{ mg/L}}{5 \text{ mL}} \times 300 \text{ mL}$$

$$BOD = \frac{3.2 \text{ mg/L}}{5 \text{ ml}} \times 300 \text{ mL}$$

Dissolved Oxygen and Biochemical Oxygen Demand Analyses

Prepared By
Michigan Department of Environmental Quality
Operator Training and Certification Unit